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Abstract 

The mathematical basis and test results are presented for 
an efficient method of calculation of structure factors from 
large molecular models with anisotropic atoms. 

The development of area detectors and synchrotron sources 
for X-rays has led to a significant improvement in both the 
quality and resolution of observed data from crystalline 
macromolecules. The existence of data to a resolution of 
1.5/~ may ultimately permit the refinement of some protein 
structures using anisotropic thermal parameters, provided 
these parameters are subject to restraints in the least-squares 
refinement (Hendrickson & Konnert, 1980). Essential to 
any refinement routine is an efficient method for the gener- 
ation of structure factors. Ten Eyck (1977) presented an 
efficient approach to the calculation of structure factors for 
isotropic atoms, which requires the generation of a model 
electron density map followed by Fourier inversion of the 
map. We present here the mathematics and trial results of 
an approach analogous to Ten Eyck's but using anisotropic 
atoms. We find that Ten Eyck's two-step process produces 
structure factors of high accuracy to a resolution of at least 
1-0 A. 

Ten Eyck, based on earlier work of Vand, Eiland & 
Pepinsky (1957), gave a suitable analytical approximation 
to the form factor 

f ( s ) = C l  exp[-¼Dls2]+C2exp[-¼DES2]+C 3. (1) 

Numerical values for C1, Dl,  C2, D2 and (?3 derive from 
a least-squares fit of (1) to values o f f ( s )  calculated from 
first principles. The quantity s is the length of the reciprocal- 
lattice vector associated with the indices h, k, l: 

S 2 --'~ h 2 a * 2 +  k 2 b * 2 +  12c*22hka*b * c o s  T*  

+2hla*c* cos fl*+2klb*c* cos a*. 

We define the anisotropic temperature factor as 
exp [-¼ a 3 Y.i=~ ~,j=t BiJs~sj], where the B ~j are the standard 
doubly contravariant components of an anisotropic thermal 
tensor and the si are the components of the reciprocal-lattice 
vector s. Explictly, st = ha*, s2 = kb* and s3 = lc*. Multipli- 
cation of (1) by the anisotrop~c temperature factor gives 
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i=l j=l 

=C~exp - Dis2+ Y. Y. B°s~sj 
i=l j=l 

-I- C2 exp [ - l (  D2s2-I- i~l j~= BiJsisj) 1 

+ G e x p  - I  ~ ~ B~Js, sj • (2) 
i = 1 j = 1  

Ten Eyck demonstrated the reduction of error in calculating 
structure factors by inflating the isotropic thermal param- 
eters of all atoms by a constant value. The appropriate form 
for the inflation factor is exp [-¼Bs2], where B is an 
arbitrary constant. Multiplication of (2) by the inflation 
factor gives 

i=l j=l 

= Cl exp - Dls2+Bs2+ Y'. Y'. Bqsisj 
i=1 j = l  

+C2exp - D2s2 + Bs2 + Y~ F~ BiJsisj 
i=1 j = l  

[( )] + C3 exp - I  Bs2+ • ~. Bqsisj • (3) 
i = 1 j = 1  

Using the definitions above for si and s 2 in the exponent 
of the first term of the right-hand side of (3), we have, after 
collecting common terms, 

3 3 
D1sE-F Bs2"F ~, ~, BOsisj 

i=l j=1 

= (B 11 + B + Dl)a*2h 2 

-t- (B22+ B + Ot)b*2k2+ (Ba3+ B + D1)c*212 

+2[B12+ (B+ Dr) cos T*]a*b*hk 

+ 2[B ta + (B + Dl) cos fl*]a*c*hl 

+2[B2a+ (B+ D~) cos a*]b*c*kl. 
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Table 1. Numerical values for the five-parameter approxima- 
tion to the form factor 

C1 Dt C2 D2 C3 

C 1.9110 8-3180 2.6424 31.6550 1.4364 
N 2.9764 7.8582 2.5000 26.4242 1.5169 
O 4.0150 6.8187 2.3748 22.5909 1.5957 

Similar expressions follow for the exponents of the second 
and third terms of (3). The expression above for the 
exponent of the first term is more compact in tensor 
notation: 

3 3 3 3 
Dts2 + Bs2 + ~, ~ BiJsisj = ~, Y. I RiJhihj, 

i=1 j = l  i=1 j=l 

where the hi are the indices h, k, I and the symmetric tensor 
of second rank I R has the elements I R°:  

I Rll  = ( B 11 + B + Dr)a 'a* 

1 R22 = (B22 + B + Dl)b*b* 

IR33  = ( B 3 3 +  B+ D1)C*C* 

1Rt2 = [ Bt2 + (B + D1) cos y*]a*b* = tR21 

tRt3 = [BI3+ (B + DI) cos/3*]a*c* = IR31 

IR23 = [B 23 + (B + D1) cos t~*]b*c* = IR32. 

One may define symmetric tensors 2R and 3 R  by analogy 
to the above for the second and third terms of (3). Thus, 
(3) becomes 

i = l j = l  

[ "  ] = C ~ e x p  - ~  ~ Y. 'RiJhihj 
i = l j = l  

i = l j = !  

i=1 j = l  

The Fourier transform of the above gives the electron 
density of the atom: 

9(xl ,  x2, x3) = (4~') 3/2 V -t det (1R)-I/ :Ct  

i=l j=l 

4- ( 4 % )  3/2 V -1 d e t  (2R)-1/2C 2 

x exp - 4 ~  "2 T~ Y. 2Qijxixj 
i= l  j = l  

+ (47r )3 /2  V -1 det (3R)-t/2C3 

x e x p [ - 4 r r 2  Y, Y, 3Qijxixj], (4) 
i = l  j = l  

where V is the volume of the direct basis, the xi are the 
components of a vector x expressed in the direct basis 
(fractional coordinates) and the kQ0. are the doubly 
covariant components of a tensor obtained by taking the 
inverse of the matrices kR. Equation (4) gives the value for 
the electron density of an anisotropic atom in any general- 

Table 2. R factor in shells between structure factors derived 
from model electron density and an analytical expression 

Range in R factor for the R factor for the 
resolution (,~) isotropic case anisotropic case 

10"0-5"0 0"013 0"008 
5"0-3"33 0"006 0-005 

3"33-2"5 0"015 0"012 
2"5-2"0 0"026 0"012 
2"0-1 "67 0"025 0-006 

1"67-1"43 0"013 0-009 
1-43-1"25 0.011 0"012 
1.25-1.11 0-021 0-010 
1-11-1-0 0"028 0"011 

Table 3. The variation of  the overall R factor to 1.0/~, 
resolution between structure factors derived from model elec- 
tron density and an analytical expression as a function of B 

in equation (3) 

Value of B R factor for the R factor for the 
in equation (3) isotropic case anisotropic case 

0.0 0.020 0.019 
1-0 0"016 0.011 
2.0 0"016 0.009 
3.0 0.017 0.009 
5.0 0.017 0.010 

10.0 0.026 0.016 

ized coordinate frame and therefore is applicable to all 
space groups. 

We performed test calculations with (4) incorporated in 
Ten Eyck's (1977) program using the small-molecule crystal 
of 1-(p-nitrobenzylidineamino)guanidinium chloride 
(Serra & Honzatko, 1986), space group P21/c, a = 8.406, 
b = 11.490, c = 11.510/~ and/3 = 101.89 °. In order to reflect 
more precisely the electron density levels of a protein, we 
omitted the hydrogens and the chloride ion from the model. 
The constants (C1, D1, C2, D2 and C3) for atoms N, C 
and O are from Pan & Honzatko (1987) and are reproduced 
in Table 1. Model electron density maps had 32 divisions 
along each axis. Fourier inversion of the map employed 
Ten Eyck's (1973) routines for space group P1. Structure 
factors calculated on the basis of an analytical expression 
came from programs of Dr Robert Jacobson, Ames Labora- 
tory. All calculations were performed on a VAX 11/780 
located in Ames Laboratory. 

The R factor in shells between structure factors calculated 
from the model density and from the analytical expression 
appears in Table 2. The R factor is essentially constant as 
a function of resolution to at least 1.0/~,. The residual of 
1 to 2% is due, in part, to the truncation of atoms beyond 
a limiting radius and to the lower accuracy of the five- 
parameter equation for the form factor (1) as opposed to 
the nine-parameter equation of the analytical calculation. 
The data of Table 3 imply that only a modest inflation 
(2.0 A2) of the temperature factor minimizes the overall R 
factor. Although in theory the more inflated the temperature 
factor, the more accurate the result, round-off error of the 
computer also becomes more significant as temperature 
factors increase. 

We thank the Office of Naval Research N00014-84-G- 
0094, the Petroleum Research Fund 16269-G4, the National 
Institutes of Health GM33828, and Ames Laboratory for 
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Abstract 

In a previous paper [Langs (1985). Acta Cryst. A41, 578- 
582] formulae were derived to reduce the magnitudes of 
structure-independent spurious peaks which appear in 
translation syntheses. The present note describes how crys- 
tallographic symmetry may be exploited to simplify these 
calculations by a factor of a hundredfold. The solution 
maximum produced by this new formulation is often more 
than ten times larger than the largest spurious background 
peak. 

Introduction 

Multiple-angle trigonometric expansions were shown to 
provide the basis for an unlimited number of exact algebraic 
relationships among the sine and cosine components (Gh 
and Sh) of the translation-function phases. One such pair 
of formulae [Langs (1985), equations (13) and (14)] are 

G h : A h [ ( G k G  I -- SkSl)  COS ¢~h,k 

-(GkSId-SkGI) sin Cl)h,k]/AkAl, (1) 

Sh = At,[ ( Gk GI - SkSI) sin q~h,k 

-I-( GkSI'4- SkGI) COS t~h,k]/ AkAi, (2) 

where the vector sum for the triple h + k + l  = 0. The terms 
Ah and qbh, k are a priori known values as defined in the 
previous paper and are not important in this exposition. 
The original set of Gh values obtained from the translation- 
function coefficients will have inherent errors due to the 
limitations of the search model and the accuracy of the 
data, as will the set of associated Sh values which are initially 
estimated as 

S h ~ Ah(GkG I sin ~ h k ) d ( A k A l ) k .  (3) 

Averaging over the above triple relationships will allow 
these values to be refined to minimize those errors. This 
analysis must necessarily be restricted to those Gh values 
which have the largest magnitudes, as the full data set will 
generate an unmanageable number of triples for these 
calculations. 

Crystallographic symmetry 

The accuracy of the above triple 'formulae is greatly 
improved by the redundancy which results as a consequence 
of crystallographic symmetry. For example, in the space 
group P2t ,  the Gh and Sh terms for a molecular fragment 
p may be shown to be of the form 
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Ghk, = [I Ehk~l 2 -  I Ehk~P I 2 -  [gh~p 12] 

= 2(--1)k]ghklpgh~Pl 

xcos[4~(hxp+Izp)+~ohklp+~ohklp], (4) 

Shkl = 2(--1)klEhklpEhfop I 

xsin[47r(hxp + lzp) + cphklp + q~hklp]. (5) 

It is important to notice that the translation portion of the 
sine and cosine terms for axially related data having com- 
mon h and 1 indices is independent of the value of k. The 
h + k + l = 0 vector-sum condition which pertains to the alge- 
braic triples among the Ghk~ and Shk~ terms applies only to 
those components linked to the translation vector contained 
in these sines and cosines. Thus the h + k+  l = 0 condition 
applies only to the h and l indices for each of the three 
reciprocal-lattice vectors. This permits the use of numerous 
other valid 'triples' for which the sum of the k indices of 
the three vectors does not equal zero in these calculations. 
It can furthermore be shown as a consequence of this 
symmetry that: (1) these calculations need not be summed 
over the total number of independent triples as this summa- 
tion can be factored, (2) not every Gh, Sh pair need be 
refined to determine their refinement values, and (3) the 
dimensions of the data arrays employed in these calcula- 
tions may be greatly reduced. These advantages will allow 
the refinement to be about 100 times faster and use half  of 
the computer memory previously required. The resultant 
phasing accuracy will be better because the full set of 
diffraction data may now be incorporated into the 
refinement. 

Factoring the triples 

In space group P21 the contribution to (1) and (2) for a 
common family of 'triples' of the sort 

~ X(h l , k i ,  ll) r(h2, kj, 12)cos/sin ~h3,h, (6) 
i j 

need not be summed over the n x m independent triples. 
Each of these contributors may be factorized to separate 
the h, k and l vectors such that 

~.. Xk  Y! c o s  ~ h , k  = COS ~0~h()-~. X k COS ~o~o k ~ YI c o s  ~o~o I 

- ~ Xk sin ~0~0 k E YI sin ~0~o~) 

- sin ~h(Y~ Xk COS ~0 k Y~ Y! sin ~0~l 

+ ~'. Xk sin ~O~Ok ~ Y! COS tptpl), (7) 
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