in Edinburgh on which the MD work was done, and for the support of the ILL facility. Dr A. W. Hewat gave us invaluable assistance with the experimental work. Finally, KR wishes to acknowledge the financial support of the Carnegie Trust for the Universities of Scotland.

References

Pawley, G. S. (1980). J. Appl. Cryst. 13, 630-633.
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.
Refson, K. \& Pawley, G. S. (1986). Acta Cryst. B42, 402-410. Refson, K. \& Pawley, G. S. (1987a). Mol. Phys. In the press. Refson, K. \& Pawley, G. S. (1987b). Mol. Phys. In the press.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1987). A43, 731-733
Calculation of structure factors from molecular models with anisotropic atoms. By Zhongiao Pan, Atsuko Takaya and Richard B. Honzatko, Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, USA
(Received 6 October 1986; accepted 5 February 1987)

Abstract

The mathematical basis and test results are presented for an efficient method of calculation of structure factors from large molecular models with anisotropic atoms.

The development of area detectors and synchrotron sources for X-rays has led to a significant improvement in both the quality and resolution of observed data from crystalline macromolecules. The existence of data to a resolution of $1.5 \AA$ may ultimately permit the refinement of some protein structures using anisotropic thermal parameters, provided these parameters are subject to restraints in the least-squares refinement (Hendrickson \& Konnert, 1980). Essential to any refinement routine is an efficient method for the generation of structure factors. Ten Eyck (1977) presented an efficient approach to the calculation of structure factors for isotropic atoms, which requires the generation of a model electron density map followed by Fourier inversion of the map. We present here the mathematics and trial results of an approach analogous to Ten Eyck's but using anisotropic atoms. We find that Ten Eyck's two-step process produces structure factors of high accuracy to a resolution of at least $1 \cdot 0 \AA$.

Ten Eyck, based on earlier work of Vand, Eiland \& Pepinsky (1957), gave a suitable analytical approximation to the form factor

$$
\begin{equation*}
f(s)=C_{1} \exp \left[-\frac{1}{4} D_{1} s^{2}\right]+C_{2} \exp \left[-\frac{1}{4} D_{2} s^{2}\right]+C_{3} . \tag{1}
\end{equation*}
$$

Numerical values for $C_{1}, D_{1}, C_{2}, D_{2}$ and C_{3} derive from a least-squares fit of (1) to values of $f(s)$ calculated from first principles. The quantity s is the length of the reciprocallattice vector associated with the indices h, k, l :

$$
\begin{aligned}
s^{2}= & h^{2} a^{* 2}+k^{2} b^{* 2}+l^{2} c^{* 2} 2 h k a^{*} b^{*} \cos \gamma^{*} \\
& +2 h l a^{*} c^{*} \cos \beta^{*}+2 k l b^{*} c^{*} \cos \alpha^{*} .
\end{aligned}
$$

We define the anisotropic temperature factor as $\exp \left[-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right]$, where the $B^{i j}$ are the standard doubly contravariant components of an anisotropic thermal tensor and the s_{i} are the components of the reciprocal-lattice vector s. Explictly, $s_{1}=h a^{*}, s_{2}=k b^{*}$ and $s_{3}=l c^{*}$. Multiplication of (1) by the anisotropic temperature factor gives

0108-7673/87/050731-03\$01.50

$$
\begin{align*}
& f(s) \exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right) \\
&= C_{1} \exp \left[-\frac{1}{4}\left(D_{1} s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right)\right] \\
&+C_{2} \exp \left[-\frac{1}{4}\left(D_{2} s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right)\right] \\
&+C_{3} \exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right) . \tag{2}
\end{align*}
$$

Ten Eyck demonstrated the reduction of error in calculating structure factors by inflating the isotropic thermal parameters of all atoms by a constant value. The appropriate form for the inflation factor is $\exp \left[-\frac{1}{4} B s^{2}\right]$, where B is an arbitrary constant. Multiplication of (2) by the inflation factor gives

$$
\begin{align*}
& f(s) \exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right) \exp \left(-\frac{1}{4} B s^{2}\right) \\
& =C_{1} \exp \left[-\frac{1}{4}\left(D_{1} s^{2}+B s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right)\right] \\
& \quad+C_{2} \exp \left[-\frac{1}{4}\left(D_{2} s^{2}+B s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right)\right] \\
& \quad+C_{3} \exp \left[-\frac{1}{4}\left(B s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right)\right] . \tag{3}
\end{align*}
$$

Using the definitions above for s_{i} and s^{2} in the exponent of the first term of the right-hand side of (3), we have, after collecting common terms,

$$
\begin{aligned}
D_{1} s^{2}+ & B s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j j_{i} s_{j}} \\
= & \left(B^{11}+B+D_{1}\right) a^{* 2} h^{2} \\
& +\left(B^{22}+B+D_{1}\right) b^{* 2} k^{2}+\left(B^{33}+B+D_{1}\right) c^{* 2} l^{2} \\
& +2\left[B^{12}+\left(B+D_{1}\right) \cos \gamma^{*}\right] a^{*} b^{*} h k \\
& +2\left[B^{13}+\left(B+D_{1}\right) \cos \beta^{*}\right] a^{*} c^{*} h l \\
& +2\left[B^{23}+\left(B+D_{1}\right) \cos \alpha^{*}\right] b^{*} c^{*} k l .
\end{aligned}
$$

Table 1. Numerical values for the five-parameter approximation to the form factor

	C_{1}	D_{1}	C_{2}	D_{2}	C_{3}
C	1.9110	8.3180	2.6424	31.6550	1.4364
N	2.9764	7.8582	2.5000	26.4242	1.5169
O	4.0150	6.8187	2.3748	22.5909	1.5957

Similar expressions follow for the exponents of the second and third terms of (3). The expression above for the exponent of the first term is more compact in tensor notation:

$$
D_{1} s^{2}+B s^{2}+\sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{1} R^{i j} h_{i} h_{j}
$$

where the h_{i} are the indices h, k, l and the symmetric tensor of second rank ${ }^{1} R$ has the elements ${ }^{1} R^{i j}$:

$$
\begin{aligned}
& { }^{1} R^{11}=\left(B^{11}+B+D_{1}\right) a^{*} a^{*} \\
& { }^{1} R^{22}=\left(B^{22}+B+D_{1}\right) b^{*} b^{*} \\
& { }^{1} R^{33}=\left(B^{33}+B+D_{1}\right) c^{*} c^{*} \\
& { }^{1} R^{12}=\left[B^{12}+\left(B+D_{1}\right) \cos \gamma^{*}\right] a^{*} b^{*}={ }^{1} R^{21} \\
& { }^{1} R^{13}=\left[B^{13}+\left(B+D_{1}\right) \cos \beta^{*}\right] a^{*} c^{*}={ }^{1} R^{31} \\
& { }^{1} R^{23}=\left[B^{23}+\left(B+D_{1}\right) \cos \alpha^{*}\right] b^{*} c^{*}={ }^{1} R^{32} .
\end{aligned}
$$

One may define symmetric tensors ${ }^{2} R$ and ${ }^{3} R$ by analogy to the above for the second and third terms of (3). Thus, (3) becomes

$$
\begin{aligned}
f(s) & \exp \left[-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B^{i j} s_{i} s_{j}\right] \exp \left[-\frac{1}{4} B s^{2}\right] \\
= & C_{1} \exp \left[-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{1} R^{i j} h_{i} h_{j}\right] \\
& +C_{2} \exp \left[-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{2} R^{i j} h_{i} h_{j}\right] \\
& -C_{3} \exp \left[-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{3} R^{i j} h_{i} h_{j}\right]
\end{aligned}
$$

The Fourier transform of the above gives the electron density of the atom:

$$
\begin{align*}
\rho\left(x_{1}, x_{2}, x_{3}\right)= & (4 \pi)^{3 / 2} V^{-1} \operatorname{det}\left({ }^{1} R\right)^{-1 / 2} C_{1} \\
& \times \exp \left[-4 \pi^{2} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{1} Q_{i j} x_{i} x_{j}\right] \\
& +(4 \pi)^{3 / 2} V^{-1} \operatorname{det}\left({ }^{2} R\right)^{-1 / 2} C_{2} \\
& \times \exp \left[-4 \pi^{2} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{2} Q_{i j} x_{i} x_{j}\right] \\
& +(4 \pi)^{3 / 2} V^{-1} \operatorname{det}\left({ }^{3} R\right)^{-1 / 2} C_{3} \\
& \times \exp \left[-4 \pi^{2} \sum_{i=1}^{3} \sum_{j=1}^{3}{ }^{3} Q_{i j} x_{i} x_{j}\right], \tag{4}
\end{align*}
$$

where V is the volume of the direct basis, the x_{i} are the components of a vector \mathbf{x} expressed in the direct basis (fractional coordinates) and the ${ }^{k} Q_{i j}$ are the doubly covariant components of a tensor obtained by taking the inverse of the matrices ${ }^{k} R$. Equation (4) gives the value for the electron density of an anisotropic atom in any general-

Table 2. R factor in shells between structure factors derived from model electron density and an analytical expression
Range in
resolution (\AA)
$10 \cdot 0-5 \cdot 0$
$5 \cdot 0-3 \cdot 33$
$3 \cdot 33-2.5$
$2 \cdot 5-2.0$
$2 \cdot 0-1.67$
$1.67-1.43$
$1.43-1.25$
$1.25-1.11$
$1 \cdot 11-1.0$
R factor for the
isotropic case
0.013
0.006
0.015
0.026
0.025
0.013
0.011
0.021
0.028
R factor for the anisotropic case
0.008
0.008 0.005
0.012
0.012
0.006
0.009
0.012
0.010
1.11-1.0
0.028

Table 3. The variation of the overall R factor to $1.0 \AA$ resolution between structure factors derived from model electron density and an analytical expression as a function of B in equation (3)
Value of B
in equation (3)
0.0
1.0
2.0
3.0
5.0
10.0
R factor for the isotropic case
0.020
0.016
0.016
0.017
0.017
0.026
R factor for the anisotropic case
0.019
0.011
0.009
0.009
0.010
0.016
ized coordinate frame and therefore is applicable to all space groups.

We performed test calculations with (4) incorporated in Ten Eyck's (1977) program using the small-molecule crystal of 1 -(p-nitrobenzylidineamino)guanidinium chloride (Serra \& Honzatko, 1986), space group $P 2_{1} / c, a=8.406$, $b=11 \cdot 490, c=11.510 \AA$ and $\beta=101.89^{\circ}$. In order to reflect more precisely the electron density levels of a protein, we omitted the hydrogens and the chloride ion from the model. The constants ($C_{1}, D_{1}, C_{2}, D_{2}$ and C_{3}) for atoms N, C and O are from Pan \& Honzatko (1987) and are reproduced in Table 1 . Model electron density maps had 32 divisions along each axis. Fourier inversion of the map employed Ten Eyck's (1973) routines for space group P1. Structure factors calculated on the basis of an analytical expression came from programs of Dr Robert Jacobson, Ames Laboratory. All calculations were performed on a VAX 11/780 located in Ames Laboratory.

The R factor in shells between structure factors calculated from the model density and from the analytical expression appears in Table 2. The R factor is essentially constant as a function of resolution to at least $1 \cdot 0 \AA$. The residual of 1 to 2% is due, in part, to the truncation of atoms beyond a limiting radius and to the lower accuracy of the fiveparameter equation for the form factor (1) as opposed to the nine-parameter equation of the analytical calculation. The data of Table 3 imply that only a modest inflation ($2 \cdot 0 \AA^{2}$) of the temperature factor minimizes the overall R factor. Although in theory the more inflated the temperature factor, the more accurate the result, round-off error of the computer also becomes more significant as temperature factors increase.

We thank the Office of Naval Research N00014-84-G0094, the Petroleum Research Fund 16269-G4, the National Institutes of Health GM33828, and Ames Laboratory for support.

References

Hendrickson, W. A. \& Konnert, J. H. (1980). Acta Cryst. A36, 344-350.
Pan, Z. \& Honzatko, R. B. (1987). Comput. Appl. Chem. In the press.

Serra, M. A. \& Honzatko, R. B. (1986). Acta Cryst. C42, 1755-1757.
Ten Eyck, L. F. (1973). Acta Cryst. A29, 182-191.
Ten Eyck, L. F. (1977). Acta Cryst. A33, 486-492.
Vand, V., Eiland, P. F. \& Pepinsky, R. (1957). Acta Cryst. 10, 303-306.

Acta Cryst. (1987). A43, 733-734

Translation functions. Note on the use of symmetry in the minimization of structure-independent spurious maxima. By David A. Langs, Medical Foundation of Buffalo, Inc., 73 High Street, Buffalo, NY 14203, USA

(Received 21 February 1987; accepted 18 May 1987)

Abstract

In a previous paper [Langs (1985). Acta Cryst. A41, 578582] formulae were derived to reduce the magnitudes of structure-independent spurious peaks which appear in translation syntheses. The present note describes how crystallographic symmetry may be exploited to simplify these calculations by a factor of a hundredfold. The solution maximum produced by this new formulation is often more than ten times larger than the largest spurious background peak.

\section*{Introduction}

Multiple-angle trigonometric expansions were shown to provide the basis for an unlimited number of exact algebraic relationships among the sine and cosine components (G_{h} and S_{h}) of the translation-function phases. One such pair of formulae [Langs (1985), equations (13) and (14)] are $$
\begin{align*} G_{\mathrm{h}}= & A_{\mathrm{h}}\left[\left(G_{\mathrm{k}} G_{\mathrm{l}}-S_{\mathrm{k}} S_{\mathrm{l}}\right) \cos \Phi_{\mathrm{h}, \mathrm{k}}\right. \\ & \left.-\left(G_{\mathrm{k}} S_{\mathrm{l}}+S_{\mathrm{k}} G_{\mathrm{l}}\right) \sin \Phi_{\mathrm{h}, \mathrm{k}}\right] / A_{\mathrm{k}} A_{\mathrm{l}} \tag{1}\\ S_{\mathrm{h}}= & A_{\mathrm{h}}\left[\left(G_{\mathrm{k}} G_{\mathrm{l}}-S_{\mathrm{k}} S_{\mathrm{l}}\right) \sin \Phi_{\mathrm{h}, \mathrm{k}}\right. \\ & \left.+\left(G_{\mathrm{k}} S_{\mathrm{l}}+S_{\mathrm{k}} G_{\mathrm{l}}\right) \cos \Phi_{\mathrm{h}, \mathrm{k}}\right] / A_{\mathrm{k}} A_{\mathrm{l}} \tag{2} \end{align*}
$$

where the vector sum for the triple $\mathbf{h}+\mathbf{k}+\mathbf{l}=0$. The terms A_{h} and $\Phi_{\mathrm{h}, \mathrm{k}}$ are a priori known values as defined in the previous paper and are not important in this exposition. The original set of G_{h} values obtained from the translationfunction coefficients will have inherent errors due to the limitations of the search model and the accuracy of the data, as will the set of associated S_{h} values which are initially estimated as

$$
\begin{equation*}
S_{\mathrm{h}} \simeq A_{\mathrm{h}}\left\langle G_{\mathbf{k}} G_{\mathbf{l}} \sin \Phi_{\mathbf{h k}}\right\rangle_{\mathbf{k}} /\left\langle A_{\mathbf{k}} A_{1}\right\rangle_{\mathbf{k}} . \tag{3}
\end{equation*}
$$

Averaging over the above triple relationships will allow these values to be refined to minimize those errors. This analysis must necessarily be restricted to those G_{h} values which have the largest magnitudes, as the full data set will generate an unmanageable number of triples for these calculations.

Crystallographic symmetry

The accuracy of the above triple formulae is greatly improved by the redundancy which results as a consequence of crystallographic symmetry. For example, in the space group $P 2_{1}$, the G_{h} and S_{h} terms for a molecular fragment p may be shown to be of the form

0108-7673/87/050733-02\$01.50

$$
\begin{align*}
G_{\mathbf{h k l}}= & {\left[\left|E_{\mathbf{h k l}}\right|^{2}-\left|E_{\mathbf{h k l}} p\right|^{2}-\left|E_{\mathbf{h} \overline{\mathbf{k}}} p\right|^{2}\right] } \\
= & 2(-1)^{k}\left|E_{\mathbf{h k} \mathbf{l}} p E_{\mathbf{h k} \mathbf{1}} p\right| \\
& \times \cos \left[4 \pi\left(h x_{p}+l z_{p}\right)+\varphi h k l_{p}+\varphi h \bar{k} l_{p}\right], \tag{4}\\
S_{\mathbf{h k l}}= & 2(-1)^{k}\left|E_{\mathbf{h k} \mathbf{l}} p E_{\mathbf{h \overline { k }} 1} p\right| \\
& \times \sin \left[4 \pi\left(h x_{p}+l z_{p}\right)+\varphi h k l_{p}+\varphi h \bar{k} l_{p}\right] . \tag{5}
\end{align*}
$$

It is important to notice that the translation portion of the sine and cosine terms for axially related data having common h and l indices is independent of the value of k. The $\mathbf{h}+\mathbf{k}+\mathbf{l}=0$ vector-sum condition which pertains to the algebraic triples among the G_{hkl} and S_{hk} terms applies only to those components linked to the translation vector contained in these sines and cosines. Thus the $\mathbf{h}+\mathbf{k}+\mathbf{l}=0$ condition applies only to the h and l indices for each of the three reciprocal-lattice vectors. This permits the use of numerous other valid 'triples' for which the sum of the k indices of the three vectors does not equal zero in these calculations. It can furthermore be shown as a consequence of this symmetry that: (1) these calculations need not be summed over the total number of independent triples as this summation can be factored, (2) not every G_{h}, S_{h} pair need be refined to determine their refinement values, and (3) the dimensions of the data arrays employed in these calculations may be greatly reduced. These advantages will allow the refinement to be about 100 times faster and use half of the computer memory previously required. The resultant phasing accuracy will be better because the full set of diffraction data may now be incorporated into the refinement.

Factoring the triples

In space group $P 2_{1}$ the contribution to (1) and (2) for a common family of 'triples' of the sort

$$
\begin{equation*}
\sum_{i}^{n} \sum_{j}^{m} X\left(h_{1}, k_{i}, l_{1}\right) Y\left(h_{2}, k_{j}, l_{2}\right) \cos / \sin \Phi_{\mathbf{h}_{3}, \mathbf{h}_{1}} \tag{6}
\end{equation*}
$$

need not be summed over the $n \times m$ independent triples. Each of these contributors may be factorized to separate the h, k and l vectors such that

$$
\begin{align*}
\sum X_{\mathbf{k}} Y_{1} \cos \Phi_{\mathbf{h}, \mathbf{k}}= & \cos \varphi \varphi_{\mathbf{h}}\left(\sum X_{\mathbf{k}} \cos \varphi \varphi_{\mathbf{k}} \sum Y_{\mathbf{l}} \cos \varphi \varphi_{\mathbf{1}}\right. \\
& \left.-\sum X_{\mathbf{k}} \sin \varphi \varphi_{\mathbf{k}} \sum Y_{\mathbf{1}} \sin \varphi \varphi_{\mathbf{1}}\right) \\
& -\sin \varphi \varphi_{\mathbf{h}}\left(\sum X_{\mathbf{k}} \cos \varphi \varphi_{\mathbf{k}} \sum Y_{\mathbf{l}} \sin \varphi \varphi_{\mathbf{l}}\right. \\
& \left.+\sum X_{\mathbf{k}} \sin \varphi \varphi_{\mathbf{k}} \sum Y_{\mathbf{1}} \cos \varphi \varphi_{\mathbf{l}}\right) \tag{7}
\end{align*}
$$

(C) 1987 International Union of Crystallography

